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Abstract
A model predictive control (MPC) inspired neural network (NN) method is proposed to solve the cooperative prob-
lems of vehicle platoon in this paper. The controller design is approximate to a quadratic programming (QP) solver for
MPC problems. However, the method proposed in this paper is based on data-driven MPC rather than being strictly
model-based. Meanwhile, compared to QP solver, the computational efficiency is significantly improved. To ensure
asymptotic convergence of the vehicle platoons, terminal penalty matrix and terminal set are taken into the optimization
problem, and a supervised learning based feedforward neural network is trained to approximate control inputs.
Compared to traditional neural network controllers, this method has the similar performance of ensuring asymptotic
stability as model predictive controller. To validate the effectiveness of the proposed controller, the information from
the leading vehicle utilizes real-world driving data from commercial trucks, which more accurately reflects the dynamic
behavior of the vehicle under actual driving conditions. Based on the real truck platform, the experimental results show
that when the leading vehicle accelerates or decelerates, the following vehicles in the platoon can make real-time
responses while exhibiting excellent dynamic performance. In addition, joint simulations based on MATLAB and
Trucksim in the curved road scenario show that the performance of lane keeping can also be guaranteed.
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Introduction

Emerging transportation technologies, represented by
autonomous driving, have a profound impact on public
travel, road transportation, and urban development.1

The industry generally believes that autonomous driv-
ing technology, represented by connected autonomous
trucks (CATs), can bring disruptive changes in the
transportation field.2 As one of the auxiliary driving
technologies, cooperative control of vehicle platoons
plays an important role in reducing driving burden and
improving traffic efficiency,3 which has received exten-
sive attention in recent years.

Vehicle platoon can be seen as a strongly nonlinear
and high-dimensional system. Due to the robustness
and ability of constraints handling, model predictive
controller has been widely used in the field of vehicle
platoon control. To further enhance the performances,
distributed model predictive control (DMPC) is used to
solve the coordination problem of high-speed vehicle

platoons.4–6 A DMPC algorithm is developed to ensure
the asymptotic consistency of mixed traffic flows.7 A
model predictive controller considering the bounded
sensor measurement range and actuator time lag is pro-
posed.8 Combined with the safety potential field model
(SPF), model predictive control (MPC) can further
improve the traffic capacity.9 A path coupling extended
prediction method is introduced to improve the safety
and tracking capability of vehicle platoons.10
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However, in actual scenarios, considering uncertain-
ties and complex nonlinear motion characteristics, the
computation burden of MPC will be greatly increased.
Due to the excellent fitting properties and high solving
efficiency, neural networks (NNs) have been widely
used. A tracking control strategy of vehicle platoons is
proposed based on adaptive neural network for reduc-
ing the measurement and communication burden
between vehicles.11 To enhance the convergence effi-
ciency compared with traditional reinforcement learn-
ing (RL) algorithms, a guided deep deterministic policy
gradient algorithm (GuidDDPG) is proposed.12

However, even well-trained neural network models face
limitations in interpretability and performance guaran-
tees, which can be critical issues for practical applica-
tions. Many existing works combine MPC with
learning algorithms, but these efforts mainly focus on
improving learning efficiency. Challenges still remain in
balancing the solution of optimal control strategies
with real-time responsiveness.

In this paper, a MPC-inspired neural network
method is proposed. Compared with traditional NNs,
this method can ensure convergence by considering
MPC terminal constraints, while significantly enhan-
cing both generalization capability and system stability.
Compared with traditional MPC controller, the pro-
posed method alleviates the dependence on the system
model, and can significantly improve computational
efficiency. Together with the vehicle platoon model, the
effectiveness of the method has been verified by real
truck data experiments and joint simulations based on
Matlab and Trucksim.

The structure of this paper is as follows: Section
‘‘Problem setup’’ is the problem setup, including longi-
tudinal and lateral dynamics of the vehicle platoon;
Section ‘‘Longitudinal and lateral platoon controller
design’’ introduces optimization problem description
and the designing process of MPC-inspired neural net-
work controller; Section ‘‘Experimental results’’ pre-
sents the experimental results based on real truck
platform and joint simulation by MATLAB and
Trucksim; Section ‘‘Conclusion’’ concludes the whole
paper.

Problem setup

This section will introduce the longitudinal and lateral
vehicle dynamics, construct the vehicle platoon model,
and clarify the control objectives based on the commu-
nication topology structure.

Vehicle dynamics

Consider a vehicle platoon consisting of N homoge-
neous vehicles, as shown in Figure 1. For the i th vehi-
cle in platoon, the longitudinal dynamics model is13:

_sx, i = vx, i
_vx, i = ai
_ai = fi vx, i, aið Þ+ gi vx, ið Þhi

8<: ð1Þ

where sx, i is the longitudinal position of the i th
vehicle(iø 2), N the total number of vehicles in platoon
including the leader and following vehicles, vx, i and ai
respectively the velocity and acceleration, fi �ð Þ and gi �ð Þ
can be respectively expressed as:

fi vx, i, aið Þ= �2Cd, i

mi
vx, iai �

1

ti vx, ið Þ

ai +
Cd, i

mi
v2x, i +

dm, i

mi

� �
gi vx, ið Þ= 1

miti(vx, i)

ð2Þ

where Cd, i is the aerodynamic coefficient, mi the vehicle
mass, ti the time constant, and dm, i the mechanical
drag.

The engine input hi can be expressed as:

hi =miui +Cd, iv
2
x, i + dm, i +2tiCd, ivx, iai ð3Þ

Then the nonlinear system (1) can be transformed into
the equivalent linear system:

_sx, i = vx, i
_vx, i = ai
_ai = � t�1i ai + t�1i ui

8<: ð4Þ

where ui is the expected acceleration of the i th vehicle.
Assuming that the longitudinal speed vx, i is known,

then the lateral vehicle dynamics model is14:

mi _vy, i +mi _vx, i _ci

� �
=F

yf
i +F

yr
i

Iz, i€ci = lf, iF
yf
i � lr, iF

yr
i

(
ð5Þ

where vy, i is the lateral velocity, _ci the yaw rate, €ci the
yaw acceleration, Iz, i the moment of inertia, F

yf
i and F

yr
i

the lateral forces on the front and rear tires, lf, i and lr, i
the distance from the center of mass to the front and
rear axles.

Assuming that the slip angles of both the front and
rear tires are within a limited range, and the tire model
is linear. Then the lateral tire forces of the front and
rear wheels can be calculated as follows15:

F
yf
i =Ccf

i di � vy, i + lf, i _ci

vx, i

� �
F
yr
i =Ccr

i
lr, i _ci�vy, i

vx, i

� � ð6Þ
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where di represents the front wheel steering angle, Ccf
i

and Ccr
i respectively represent the lateral stiffness of the

front and rear wheels.
Substituting (6) into (5), then the lateral dynamics

model can be written as:

_vy, i =�vx, i _ci +
1

mi
�

Ccf
i +Ccr

i

� �
vy, i

vx, i
�

0@
Ccf

i lf, i � Ccr
i lr, i

� �
_ci

vx, i
+Ccf

i di

1A
€ci =

1

Iz, i
�

Ccf
i lf, i � Ccr

i lr, i

� �
vy, i

vx, i

0@
�

Ccf
i l

2
f, i +Ccr

i l
2
r, i

� �
_ci

vx, i
+Ccf

i lf, idi

1A

ð7Þ

Communication topology

V2V communication system is a short-range communi-
cation technology that enables vehicles to share infor-
mation.16 Common V2V communication topologies
include predecessor-following (PF) and predecessor-
leader-following (PLF) structures.17 In the PF struc-
ture, each vehicles only receives information from the
preceding one, and the PLF structure enables the vehi-
cles to receive the information from both the leader and
the preceding one (Figure 2).

Different vehicle platoon strategies are determined by
the specific communication topologies employed.18 The
PF communication topology structure is adopted in this
paper, that is, the following vehicle can only receive infor-
mation from the preceding one. In the subsequent research
of this paper, it is assumed that all vehicles share a syn-
chronized clock, and communication delays and noise
interference between vehicles in the convoy are neglected.

Vehicle platoon model for control

To achieve longitudinal and lateral control objectives,
this subsection introduces the process of establishing
the longitudinal and lateral vehicle platoon error model
based on longitudinal single-vehicle model (4) and lat-
eral single-vehicle model (7).

In longitudinal platoon control, it is essential to
maintain a safe and appropriate distance between vehi-
cles.19 In this paper, the chosen spacing policy com-
bines fixed spacing with headway, that is, the expected
vehicle spacing is defined as follows:

di, des = d0 + hivi ð8Þ

where di, des is the expected vehicle spacing, d0 the fixed
spacing, hi the time headway, and vi the speed of the i
th vehicle in platoon.

Define the longitudinal spacing error exi and speed
error evi as:

exi = sx, i�1 � sx, i � di, des
evi = vx, i�1 � vx, i

�
ð9Þ

Denote xi = ½exi evi ai�
T, then the state-space represen-

tation of longitudinal platoon model can be written as:

_xi tð Þ= �Aixi tð Þ+ �B1, iui tð Þ+ �B2, iai�1 tð Þ ð10Þ

with �Ai =

0 1 �hi
0 0 �1
0 0 �t�1

2664
3775, �B1, i =

0
0

t�1

2664
3775, �B2, i =

0
1
0

2664
3775

Define Ts as the sampling time, then the discrete
state-space representation of the longitudinal vehicle
platoon model (10) based on Euler discretization
method is:

xi k+1ð Þ=Aixi kð Þ+B1, iui kð Þ+B2, iai�1 kð Þ ð11Þ

where

Ai =

1 Ts �Tshi
0 1 �Ts

0 0 1� Ts

t

24 35,B1, i =

0
0
Ts

t

24 35,B2, i =
0
Ts

0

24 35

Figure 1. Basic structure of vehicle platoon.

Figure 2. Schematic diagram of communication topology
structure: (a) PF communication topology structure and (b) PLF
communication topology structure.
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For the lateral control, the heading angle error of the
i th vehicle in platoon ec

i is:

ec
i =ci � ui ð12Þ

where ci is the heading angle, ui the heading angle of
reference path.

The lateral position error with respect to the refer-
ence path can be described as:

_eyi = vx, isin ec
i

� �
+ vy, icos ec

i

� �
ð13Þ

where ec
i is an extremely small number, that is,

sin ec
i

� �
’ec

i and cos ec
i

� �
’1, then (13) can be trans-

formed into:

_eyi = vx, i � ec
i + vy, i ð14Þ

Combining (7), (12), and (14), the lateral vehicle pla-
toon model is obtained:

€ei
y = �

Ccf
i +Ccr

i
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mivx, i

_eyi +
Ccf

i +Ccr
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0@ 1A
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di

€ec
i = �

Ccf
i lf, i � Ccr

i lr, i

� �
Iz, ivx, i
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Ccf
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i lr, i

� �
Iz, i
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�
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2
f, i +Ccr

i l
2
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Iz, ivx, i

_ec
i �

Ccf
i l

2
f, i +Ccr
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2
r, i
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Ccf

i lf, i
Iz, i

di

ð15Þ

Define the state �xi and the front wheel steering angle
~ui of the lateral vehicle platoon model as:

�xi = e
y
i _eyi ec

i _ec
i

	 
T
~ui = di

Then the state-space equation of lateral vehicle pla-
toon is:

_~xi tð Þ= b�Ai�xi tð Þ+ b�Bi~ui tð Þ+ b�Ei _ui tð Þ ð16Þ

where

b�Ai =

0 0 0 0

1 � Ccf
i
+Ccr

ið Þ
mivx, i tð Þ 0 � Ccf

i
lf, i�Ccr

i lr, ið Þ
Iz, ivx, i tð Þ

0
Ccf

i
+Ccr

ið Þ
mi

0
Cc

i lf, i�Cc
i lr, ið Þ

Iz, i

0 � Cc
i lf, i�Ccr

i lr, ið Þ
mivx, i tð Þ 1 � Ccf

i
l2
f, i
+Ccr

i l
2
r, ið Þ

Iz, ivx, i tð Þ

266666664

377777775

T

b�Bi = 0
Ccf

i

mi
0

Ccf
i
lf, i

Iz, i

h iT
b�Ei = 0 � Ccf

i
+Cc

ið Þ
mivx, i tð Þ � vx, i tð Þ 0 � Ccc

i l
2
f, i
+Ccr

i l
2
r, ið Þ

Iz, ivx, i tð Þ

h iT

The discrete state-space representation of the lateral
vehicle platoon model based on Euler discretization
method is written as:

~xi k+1ð Þ= Âi~xi tð Þ+ B̂i~ui tð Þ+ Êi _ui tð Þ ð17Þ

where Âi, B̂i, and Êi are the discretized coefficient
matrix.

Control objective

For the vehicle platoon, the control objectives for the
following vehicles are to maintain longitudinal tracking
of the leading vehicle while also achieving effective
lane-keeping control. Additionally, state and control
constraints need to be considered.

The longitudinal control objective of the vehicle pla-
toon is to track the longitudinal velocity of the leader
vehicle, that is,

lim
k!‘
k vx, i kð Þ � vx, i�1 kð Þ k =0

lim
k!‘
k sx, i�1 kð Þ � sx, i kð Þ � di, des k =0

iø 2, kø 0

(
ð18Þ

The position error exi and speed error evi between
two adjacent vehicles should be maintained at a desired
value, that is,

exi,min4exi kð Þ4exi,max

evi,min4evi kð Þ4evi,max
iø 2, kø 0

�
ð19Þ

where exi,min and exi,max are the allowed minimum and
maximum permissible spacing errors, evi,min and evi,max

the minimum and maximum speed error.
The lateral control objective of the vehicle platoon is

to track the lane markings, that is,

lim
k!‘
k eyi kð Þ � 0 k =0

lim
k!‘
k ec

i kð Þ � 0 k =0
iø 2, kø 0

8<: ð20Þ
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Furthermore, to ensure that vehicles in the platoon
remain within the road boundaries, the following con-
straints are imposed:

ec
i,min4ec

i kð Þ4ec
i,max

e
y
i,min4e

y
i kð Þ4e

y
i,max

iø 2, kø 0

�
ð21Þ

where ec
i,min and ec

i,max are the allowed minimum and
maximum heading errors of the i th vehicle relative to
the lane, e

y
i,min and e

y
i,max correspond to the minimum

and maximum lateral position errors relative to the
lane.

Longitudinal and lateral platoon controller
design

In this section, a MPC-inspired neural network method
is proposed for vehicle platoon control, where each
vehicle in the platoon sequentially solves its local opti-
mization problem and communicates information with
its neighbors.

Distributed model predictive controller

Under DMPC framework, a global optimization prob-
lem is converted into local optimization problems,
where each subsequent vehicle solves its own problem
synchronously.

For the i th vehicle in platoon, define the sequence of
the inputs Ui : jkð Þ at moment k as:

Ui : jkð Þ= Ui kjkð Þ,Ui k+1jkð Þ, :::,Ui k+Ni, p � 1jk
� �� �

ð22Þ

where Ni, p is the prediction horizon length, Ui : jkð Þ the
predictive control input. Accordingly, the sequence of
the states Xi : jkð Þ at moment k is:

Xi : jkð Þ= fXi kjkð Þ,Xi k+1jkð Þ, :::,Xi k+Ni, p � 1jk
� �

g
ð23Þ

where Xi : jkð Þ the predictive state, and Xi kð Þ=Xi kjkð Þ,
Ui kð Þ=Ui kjkð Þ.

For the longitudinal control of the i th vehicle in pla-
toon, the optimization problem can be described as
follows:

Problem 1.

minimize Ji xi kð Þ, ui kð Þð Þ=
PNi, p�1

j=0

qi xi, uið Þ+ pi xið Þ

ð24Þ

s.t.

pi xið Þ= k xi k+Ni, p � 1jk
� �

k2Pi
,

qi xi, uið Þ= k xi k+ jjkð Þ k2Qi
+ k ui k+ jjkð Þ k2Ri

,

x k+Ni, p � 1jk
� �

2 Oi,

vxi,min4vxi k+ jjkð Þ4vxi,max,

ai,min4ai4ai,max,

exi,min4exi 4exi,max,

evi,min4evi4evi,max

where Qi and Ri are the weight matrices, Pi the terminal
penalty matrix, Oi the terminal constraint set.

The definitions of the terminal penalty matrix Pi and
terminal constraint set Oi are used to ensure the asymp-
totic consensus of the platoon. The terminal penalty
matrix Pi is calculated by solving the following discrete
Riccati equation:

AT
i Pi � PiBi Ri +BT

i PiBi

� ��1
BT
i Pi

� �
Ai � Pi +Qi =0

ð25Þ

The terminal constraint set Oi should satisfy that:

Oi : = fxi 2 R
m j xTi Pixi4aig ð26Þ

where ai is a positive constant around the equilibrium
point of the system.

If Problem 1 is feasible at the initial time instant, the
feasibility of Problem 1 can be guaranteed with the ter-
minal penalty matrix Pi and terminal set Oi, that is, the
asymptotic consensus of the vehicle platoon is
guaranteed.

Definition 1. (Asymptotic consensus20): At time instant
k, if the state of the leading vehicle changes, all the
errors of following vehicles in the platoon can asymp-
totically converge to zero.

At time instant k, only the first element of the input
sequence is applied to the i th vehicle. At the next time
instant, the entire process will be repeated with updated
measurements and information exchange, that is,

xi k+1ð Þ= f xi kð Þ, umpc xi kð Þð Þ
� �

kø 0 ð27Þ

where

ui xi kð Þð Þ= umpc xi kð Þð Þ=Ui 0 j kð Þ ð28Þ

Define Ji xi kð Þ, ui kð Þð Þ as the cumulative cost, and
denote J�i xi kð Þ, ui kð Þð Þ as the optimal cumulative cost
associated with the optimal input u�i x kð Þð Þ. By utilizing
the Lyapunov stability theorem, a sufficient condition
for asymptotic consensus can be derived.
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Accordingly, for lateral control of the i th vehicle in pla-
toon, the optimization problem can be described as follows:

Problem 2.

minimize ~Ji ~xi kð Þ, ~ui kð Þð Þ=
P~Ni, p�1

j=0

~qi ~xi, ~uið Þ+ ~pi ~xið Þ

ð29Þ

s.t.

~pi ~xið Þ= k ~xi k+ ~Ni, p � 1jk
� �

k2~Pi
,

~qi ~xi, ~uið Þ= k ~xi k+ jjkð Þ k2~Qi
+ k ~ui k+ jjkð Þ k2~Ri

,

~x k+ ~Ni, p � 1jk
� �

2 ~Oi,

v
y
i,min4v

y
i k+ jjkð Þ4v

y
i,max,

ci,min4ci4ci,max,

di,min4di4di,max,

ec
i,min4ec

i 4ec
i,max,

e
y
i,min4e

y
i4e

y
i,max

where ~Qi and ~Ri are the weight matrices, ~Pi the terminal
penalty matrix, ~Oi the terminal constraint set.

A vehicle platoon problem is studied in this paper
that considers the decoupled longitudinal and lateral
vehicle dynamics, while model predictive controller
may lead to significant computational burdens. In prac-
tical applications, insufficient computing power can
result in controller failure. To address this issue, next
subsection will introduce a MPC-inspired neural net-
work method.

MPC-inspired neural network controller

Neural networks can address computational efficiency
issues through offline training. However, the training
data sources for traditional NN controllers are often
unknown, and their internal structures are typically
opaque. Therefore, in this subsection, a MPC-inspired
neural network controller is proposed by combining
MPC with feedforward neural networks (FNNs). This
method not only ensures the interpretability of data
sources but also enhances the dynamic performance of
the NNs. The overall control block diagram is shown
in Figure 3.

The dataset required for training and testing the
neural network includes information on states and con-
trol inputs. By randomizing initial conditions and
applying to the MPC law, multiple data sequences can
be generated. The dataset D is defined as:

D= xi, umpc xið Þ
� �N

j=1
ð30Þ

where j is the number of training trajectories, and N the
total number of data trajectories, including the training
dataset Ntrain and the testing dataset Ntest.

Feedforward neural networks are adapted to
approximate the control law of MPC. The transmission
expression for the l-th layer of the single neuron is
defined as:

z lð Þ=W lð Þ � a l�1ð Þ+ b lð Þ,

a lð Þ= flðz lð ÞÞ:
ð31Þ

where l represents the number of layers, fl �ð Þ the activa-
tion function of the l th neurons, W lð Þ the weight matrix
from layer l� 1 to l, b lð Þ the bias from layer l� 1 to l,
z lð Þ the input of the l th neurons, and a lð Þ the output of
the l th neurons.

In the imitation phase, supervised learning is
employed for NN training with the goal of minimizing
the following mean squared error (MSE):

u= arg min
u

1

Ntrain

XNtrain

j =1

k unn � umpc k22 ð32Þ

where u represents the NN parameter, unn the control
input approximated by NNs.

Remark 1. During the training process, the NNs can be
further fine-tuned using a reinforcement learning algo-
rithm, which may help reduce instability under extreme
conditions.

The proposed MPC-inspired NN controller not only
ensures the stability of the NN controller but also
inherits the excellent performance while addressing the
issue of excessive computation time associated with tra-
ditional MPC. The approximate control quantitybui xi kð Þð Þ is defined as:

bui xi kð Þð Þ= unn xi kð Þð Þ ð33Þ

where bui : Rm ! R
n, m the dimension of input quantity

and n the dimension of output quantity.

Figure 3. The structure of MPC-inspired NN controller.
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Experimental results

This section will introduce the experimental results of
dataset generation, and verify the effectiveness of the
proposed controller based on actual truck driving data,
and MATLAB/Trucksim joint simulation.

Neural network training and testing

For the longitudinal control of platoon, the parameters of
the MPC-inspired NN controller are shown in Table 1.

where Nhidden is the number of hidden layers, nhidden
the number of hidden layer neurons, Ninput and Noutput

the number of input and output layers. Accordingly,
the parameters for the lateral controller are shown in
the following Table 2.

According to the process of data generation (30),
the longitudinal and lateral dataset for training is
shown in Figure 4, where Figure 4(a) represents the
relationship between longitudinal position error exi ,
longitudinal velocity deviation evi and acceleration ai,
(b) represents the lateral position error e

y
i , the heading

angle deviation ec
i and lateral velocity deviation _eyi ,

respectively.
To test the approximation effect, correlation coeffi-

cients Rtrain,Rtest are defined to quantify the relationship
between the approximate values and expected values:

Rtrain=

PNtrain

i=1
ui��uið Þ ûi�ûið ÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN

i=1
ui��uið Þ2

PNtrain

i=1
ûi�ûið Þ2

q
Rtest =

PNtest

i=1
ui��uið Þ ûi�ûið ÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN

i=1
ui��uið Þ2

PNtest

i=1
ûi�ûið Þ2

q ð34Þ

where �ui is the average of actual values and ûi the aver-
age of approximate values, ui = umpc xi kð Þð Þ and
�ui = unn xi kð Þð Þ.

If Rtrain and Rtest are close to 1, it indicates that
the NNs exhibit strong approximation capabilities.
From Figure 5, it can be seen that all deviations
are below 0.01, indicating that the MPC-inspired
neural network exhibits excellent approximation
performance.

Real vehicle numerical verification

In order to better verify the effectiveness of the pro-
posed controller, this subsection selects real driving
data as the test condition to assess the performance of
the NN controller. During the real truck experiment,
two domestic heavy-duty trucks were selected as the
experimental vehicles. The following truck obtains sta-
tus information of the leading truck through the per-
ception module, and achieves data fusion through the
CANFD device. Based on these information, the fol-
lowing truck needs to plan the driving path and calcu-
late the control inputs to achieve good performance.
The real vehicle data collection is shown in Figure 6.

Representative test data needs to be selected from
extensive data. The entire validation process should
include various driving conditions such as accelera-
tion, deceleration, and constant speed. The extracted
speed and acceleration data of the truck were applied
to verify the effectiveness of the NN controller pro-
posed in this paper. The verification results are shown
in Figure 7.

Figure 7(a) and (b) represent the spacing error ex1�2
and longitudinal velocity error ev1�2, respectively. By
comparison, it can be seen that two curves align closely,
indicating that the NN controller has excellent approxi-
mation performance. Figure 7(c) and (d) represent the
acceleration ai and speed vi of two trucks. It indicates
that the following truck successfully follows the leading
truck and has good performances.

Table 1. Parameters of longitudinal controller.

Parameters Value Parameters Value

Ts 0.1 s Ni, p 8
Qi diag 30 30 10ð Þ Ri 10
xi, max ½10 2 2� xi, min ½�10� 2� 2�
Nhidden 3 nhidden ½20 10 20�
Ninput 3 Noutput 1

Table 2. Parameters of lateral controller.

Parameters Value Parameters Value

Ts 0.1 s ~Ni, p 8
~Qi diag 20 20 20 20ð Þ ~Ri 10
~xi, max ½0:7 0:7 0:7 0:7� ~xi, min ½�0:7� 0:7� 0:7� 0:7�
~Nhidden 3 ~nhidden ½20 10 20�
~Ninput 4 ~Noutput 1
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Simulation results

Consider a homogeneous commercial vehicle platoon
consisting of one leading vehicle and three following
vehicles, all of which are fully loaded. Build an union
simulation platform based on MATLAB and Trucksim.
The vehicle parameters are shown in Table 3.

The computer configuration is 12th Gen Intel (R)
Core (TM) i7-12700 2.10GHz and NVIDIA GeForce
GT 1030. To verify the effectiveness of the controller,
two simulation conditions are designed as follows based
on Chinese road design standards.

Driving condition 1. In this driving condition, four vehi-
cles drive at a constant speed of 20m/s. The leading

vehicle then decelerates, and enters a curve with a turn-
ing radius of 200m before exiting. The simulation
results are shown in Figure 8.

Driving condition 2. In this driving condition, four vehi-
cles drive at a constant speed of 20m/s, the leading
vehicle then accelerates, and enters a curve with a turn-
ing radius of 400m before exiting. The simulation
results are shown in Figure 9.

From the results, it can be seen that the MPC-
inspired NN controller proposed in this paper can
achieve real-time optimization of strategies while ensur-
ing that the following vehicles maintains good dynamic
performance. When the leading vehicle turns, the

Figure 4. Dataset for training: (a) dataset for longitudinal controller designing and (b) dataset for lateral controller designing.
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following vehicle quickly adapts, maintaining all errors
within allowable ranges. This ensures that the platoon
maintains strong tracking performances.

In the two driving conditions described, the MPC-
inspired NN controller has an average computational
time of 3:04310�2 ms, while MPC takes 2:61310�1 ms
on average. Note that the values are obtained after the
computer’s performance is stable. Compared to MPC,
the computational efficiency of the MPC-inspired NN
controller is improved by more than 80%, achieving the
expected control objectives.

Remark 2. String stability is a common evaluation
metrics for vehicle platoons, referring to the situation

Figure 5. Approximate effect verification (The horizontal axis
represents the actual value, and the vertical axis represents the
approximate value. The black circles represent the data points,
and the solid line represents the mapping relationship.): (a)
longitudinal controller verification and (b) lateral controller
verification.

Figure 6. Real vehicle data collection.

Figure 7. Verification results based on real vehicle data (The blue solid line and red dotted line represent the performance of MPC,
and MPC-inspired NN respectively.): (a) longitudinal position error, (b) longitudinal speed error, (c) longitudinal acceleration, and
(d) longitudinal speed.
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where the error between vehicles gradually decreases as
the number of following vehicles increases.21 This
paper focuses more on approximating MPC based on
terminal constraints using supervised learning to ensure
that the system exhibits performance and convergence
nearly identical to that of the MPC, without consider-
ing the string stability constraints at this stage. Test
results show that under different traffic conditions, the
errors between vehicles are consistently much smaller

Table 3. The parameters of the vehicle.

Parameters Value Parameters Value

hi 1 d0 10 m
Cd, i 0.3 ti 0.25
mi 18,000 kg Iz, i 130,235.8

kg �m2

lf , i 3.5 m lr, i 1.5 m
Ccf

i 271,127.22
N=rad

Ccr
i 533,145.17

N=rad

Figure 8. Driving condition 1: (a) longitudinal speed, (b) longitudinal position error, (c) heading angle, (d) heading angle error,
(e) lateral position error, and (f) computational time.
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than the allowable values, with minimal differences
among the error values, meeting practical application
requirements. String stability constraints will be consid-
ered in future to further enhance the completeness of
the theory.

Conclusion

In this paper, a MPC-inspired NN controller was pro-
posed for cooperative control of vehicle platoons. This
method combined the advantages of MPC and NNs,

Figure 9. Driving condition 2: (a) longitudinal speed, (b) longitudinal position error, (c) heading angle, (d) heading angle error,
(e) lateral position error, and (f) computational time.
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which ensured asymptotic consensus of vehicle pla-
toons, and greatly improved the computational effi-
ciency. Through the driving data collection platform of
trucks and joint simulation platform based on
MATLAB and Trucksim, the proposed MPC-inspired
NN controller demonstrated its ability to meet the
expected control objectives, proving its effectiveness in
real-world applications. This method presented a new
concept for the current autonomous vehicle platoon
controller, which enhanced the safety and intelligence
of autonomous vehicles to some extent. But this
approach also has certain limitations, including the dis-
regard for string stability and the effects of lateral-
longitudinal coupling. Future research will focus on
optimizing this method further and incorporating more
complex traffic conditions to bridge the gap between
theoretical models and real-world scenarios.
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